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Introduction

In mathematics, compartmental modeling is a framework often used when the
members of a set can be grouped into distinct categories or compartments. When
the resulting system is coupled in a nonlinear way, numerical solutions are often the
only way to approximate the true solutions. Here, we use power series solutions to
represent the solution in each compartment. We show the development of the SIR
model, used typically to simulate infectious diseases, in which the function S(t) rep-
resents the number of susceptible individuals, the function I(t) represents the number
of infected individuals, and the function R(t) represents the number of recovered
individuals in a given population. We consider these quantities as parts of the whole
fixed population such that the derivatives of these fractions are the basis of our model.

We follow this by calculating the equilibrium values to support our model, as well
as the series solutions. In order to gauge the accuracy of our model, we identify the
true solution as the one calculated by utilizing Euler’s method. We compare the true
solutions and the series solutions using multiple intervals over an extended time frame.

The project goal is to model the spread of an infectious disease by utilizing dynamical
systems. Dynamical systems are made up of differential equations relating unknowns
that depend on time. Considering a fixed population, N , the percentages that are
incorporated in our model are as follows:

s(t) =
S(t)

N
, i(t) =

I(t)

N
, and r(t) =

R(t)

N
.

Our model consists of the first-order coupled (nonlinear) differential equations for s,
i, and r.

The change in s and i depends on the rate at which an infected person spreads the
disease, where β represents the significance of the interaction between s and i. The
change in both i and r depends on the recovery rate, γ, and the population size,
i. The change in r and s depends on the length of time that a recovered individual
becomes susceptible again. This is governed by the parameter η. Note this also has
an impact on the rate of change in s. In particular, the model we consider is

ds

dt
= −βsi + ηr,

di

dt
= βsi− γi, and

dr

dt
= γi− ηr.

Equilibrium Values

We consider the question, at what point does time not play as critical of a role?
In order to analyze this, we begin with a look at the stability of the constant, or
equilibrium solutions, to the dynamical system.

The equilibrium values [2] of the system are the values for which f (v) = 0. For our
SIR system, we obtain, aside from the origin (0, 0, 0), and the disease free equilibrium
solution, edf = (1, 0, 0),

eeq = (es, ei, er) =

(
γ

β
,
γ(β − γ)

β(η + γ)
,
η(β − γ)

β(η + γ)

)
.

Series Solutions

The aim is to generate power series series solutions for each of s, i, and r and to
develop a recurrence relation for the coefficients in order to determine what role time
plays in the equation. We assume the series have the following form:

s(t) =

∞∑
n=0

snt
n, i(t) =

∞∑
n=0

int
n, and r(t) =

∞∑
n=0

rnt
n.

Inserting these equations into the derivatives yields the following recurrence relations
for the coefficients for n ≥ 0:

sn+1 =
1

n + 1

−β

n∑
p=0

sn−pip

 + ηrn

in+1 =
1

n + 1

β

n∑
p=0

sn−pip

 + γin

rn+1 =
1

n + 1
(γin − ηrn) .

As is suggested in [1], practical implementation requires a restart (or recentering) of
the series and we have to use only a finite number of terms. Consequently, we set

s(t, t′, N) =

N∑
n=0

st′,n(t− t′)n,

and similarly define i(t, t′, N) and r(t, t′, N).
The choice of distance between the t′-value is central to the success of the imple-
mentation. We want to determine a radius of convergence for each of the series
representations on intervals whose minimum value is t′. We denote this interval by

It′,ε = [t′, t′ + ε].

Given the lack of explicit formulae for the coefficients and noting that not all terms
are positive, we consider the series of positive terms,

∑N
n=0 |st′,n|(t − t′)n. and seek

values of c and b for which |st′,n| ∼ cebn.
Given suitable values for c and b, we note the ratio∣∣∣∣st′,n+1st′,n

∣∣∣∣ ≈
∣∣∣∣∣ceb(n+1)(t− t′)n+1

cebn(t− t′)n

∣∣∣∣∣ = eb|t− t′|

indicates the series will converge for an ε value generally less than e−b.

Adaptive Algorithm - fixed N-value:

(0)Choose a truncation value, N, for the series, determine a method for choos-
ing the length of each subinterval, ε in It′,ε, and initialize t′ = t0.

Then, until t′ ≥ tend, repeat steps (1)− (4) :

(1)Compute coefficients in the recurrence relations with initial conditions
s(t′), i(t′), and r(t′).

(2)Compute ε for It′,ε.
(3)Compute the values of s(t, t′, N), i(t, t′, N) , and r(t, t′, N) for t ∈ T ∩ It′,ε
(4) Set t′ the right end point of It′,ε in (3).

Numerical Example

In this example, we demonstrate the implementation of the algorithm without the
adaptive choice of R in step (3) using fixed values of N and R. We continue with
the parameters set in the previous example and consider a time frame from t = 0
to t = 1000. The algorithm is run for R-values of 11, 10, 9, and 8, and for N -values
beginning with 2, 5 and then in increments of 5 to 60. The results for R = 8 and
N = 45 are shown in part (a) of the figure below. The convergence of the error is
shown in part (b) of the figure below where the results are intuitive in the sense that
the error decreases as both R decreases and N increases.
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(a) R = 8 and N = 45 (b) E(N,R)

The N -value has more influence on the accuracy in computing the equilibrium values
for smaller t-values, as shown in the table below.

Conclusion

We have presented an algorithm to implement series approximations that is adaptive
in the R. Using the adaptive algorithm, we were able to obtain accurate results at
a reduced computational cost. By quantifying the way the coefficients decayed, we
approximated the radius of convergence.

A more thorough investigation to quantify this relationship is needed. This would
lead to an algorithm that is not only adaptive in the R, but also in the number of
terms that is needed. Also, in practice, parameters are not constant, so it would be
interesting to see how the system reacts when parameters are variable.
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