

Author: Dustin Ho

Adviser: Dr. Tjeerd Boonman

SCHOLARSHIP WEEK

Table 1: Hypothesis 1 Results

Dependent Variable of Happiness

Predictors	Estimates	CI	p
(Intercept)	2.06	2.05 – 2.07	< 0.001
Income	4.036e ⁻⁰⁶	0.00 - 0.00	< 0.001

Observations: 31019

R2 / R2 adjusted: 0.032 / 0.032

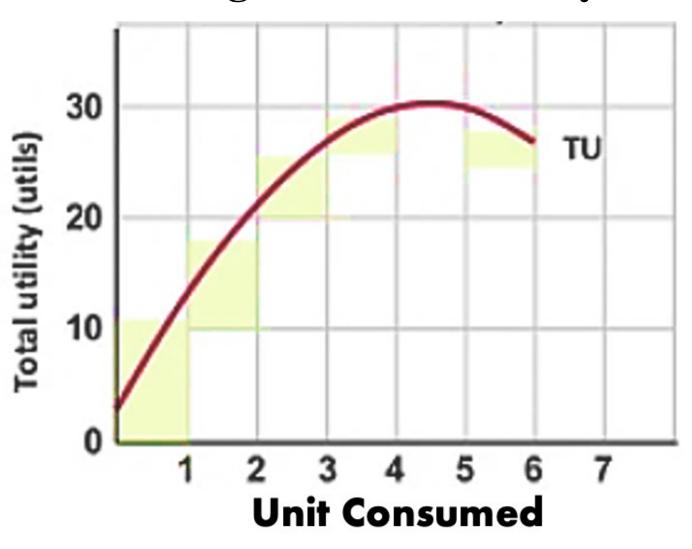
p-value:

 $2.2e^{-16}$

Source: Calculation by Author

Source: Calculation by Author

Table 2: Hypothesis 2 Results


Dependent Variable of Happiness

	Happiness		
Predictors	Estimates	p	
(Intercept)	1.96	< 0.001	
Income	1.005e ⁻⁵	< 0.001	
Income Square	-5.062e ⁻¹¹	<0.001	
Observations:	31019		
R2 / R2 adjusted:	0.042 / 0.042		
p-value:	$2.2e^{-16}$		

Economic Variables that Contribute to Happiness in the United States

A relationship between household level economic variables and their self-reported level of life satisfaction

Figure 1. Total Utility

Source: McConnell, Campbell R., Stanley L. Brue, and Sean M. Flynn. Economics: Principles, Problems, and Policies

3 Table: Hypothesis 3 Results

Dependent Variable of Happiness

Predictors		Estimates	CI	р
(Intercept)		1.300e+00	1.24 - 1.36	< 0.001
Income		1.322e-06	0.00-0.00	0.001
Income Squared		-6.331e-12	-0.000.00	0.027
health		0.1758	0.17 - 0.18	< 0.001
class		0.07649	0.06 - 0.09	< 0.001
Financial Status		0.06595	0.06-0.08	< 0.001
Education		-0.005598	-0.010.00	< 0.001
Age		0.01945	0.02-0.02	< 0.001
Sex		-0.07119	-0.080.06	< 0.001
Race		0.03858	0.03 - 0.05	< 0.001
Marital		-0.1007	-0.110.09	< 0.001
Region		0.004670	0.00 - 0.01	0.001
Observations:	31019			
R2 / R2 adjusted:	0.140 / 0.139			

Source: Calculation by Author

DATA SOURCE

- General Social Survey (GSS): NORC at the University of Chicago
- The GSS is a nationwide survey of adults in the United States and collects data on contemporary American society in order to monitor and explain trends in opinions, attitudes, and manners.

THEORY

<u>Total Utility</u> - (Figure 1)

• The principle I used for the research is the law of diminishing marginal utility. Total utility is increasing for every until gained but there is a maximum amount of utility as the total utility curve (TU) concaves downwards.

Marginal Utility - (Figure 2)

• As total utility increases, marginal utility decreases, and because there is a diminishing return between total and marginal utility (shown on the downward sloping marginal utility curve — MU). The yellow areas in graph A are reflected in graph B with the same increments.

METHODS

Multivariate Regression

- Hypothesis 1: $Y_i = \alpha + \beta_1 X_i + \varepsilon_i$
- Hypothesis 2: $Y_i = \alpha + \beta_1 X_i + \beta_2 X^2 + \varepsilon_i$
- Hypothesis 3: $Y_i = \alpha + \beta_1 X_i + \beta_2 X^2 + \gamma Z_i + \varepsilon_i$

RESULTS

Hypothesis 1: (Table 1)

• The estimated value (β_1) for income is $4.036e^{-06}$, meaning the relationship between happiness and real income is positively related, so as happiness level increases income is also increasing. The result from hypothesis 1 supports my argument: income will increase with happiness because of utility maximization.

Hypothesis 2: (Table 2)

• The square income variable estimated value (β_2) is $-5.062e^{-11}$ showing that the relationship between happiness and income squared is inversely related. Squaring income in the model makes income a negative quadratic variable.

Hypothesis 3: (Table 3)

- Health's coefficient is positive in the model showing a positive relationship with happiness, concluding that if a person is healthier, they are more likely to be happier.
- Education in the happiness model shows an inverse relationship with happiness because of its negative coefficient. The results show that the more years of education a person has happiness will be negatively impacted.
- Age is another consistent variable to consider when measuring happiness and when added to the model it shows a positive relationship with happiness.