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ABSTRACT

Building a cellular yet effectively modular infrastructure is critical for major productive 
systems such as information and engineering, among others.  In particular, flexible, optimized, 
and dynamic layouts of facilities are critical for successfully incorporating infrastructures for 
organizations.   Application examples range from determining physical topologies for local 
area networks to cellular, agile manufacturing, in which the problem is closely associated 
with determining the optimal number of clusters of workgroups, comprising servers, wireless 
access points, PC’s, printers, routers, firewalls, or automated welding machines.   

A general-purpose neural-network application is suggested in this paper for real-time 
intelligent facility layout.   Classical clustering techniques such as Hungarian algorithm, 
Group Technology, and BLOCPLAN have been proven to be ineffective, relative to the 
method outlined in this research.  The effect of the development is illustrated with a 
simplified numerical example.   

                   

Keywords: Facility Layout,  Information Technology Infrastructure,  Network Topology, 
Clustering,  Neural Network,  Feedforward Network,  Perceptron,  Linear 
Classifier.   

1. Introduction 
As the information era matures in the twenty-first century, the focus of technology 

development has shifted from heavy engineering such as manufacturing to information 
systems.  Indeed, the two systems are different in many ways in that the former delivers 
tangible products, whereas the latter is concerned with virtual product development.   
However, this may not imply that the two are completely incompatible.  In fact, they share a 
number of problems, among which are ‘systems’ and ‘infrastructure’ related (Willow and 
Yang 1997,  Willow 2007a).   

Building a cellular yet effectively modular infrastructure is critical for establishing the 
information system infrastructure.  In particular, flexible, optimized, and dynamic layouts of 
facilities are critical for successfully incorporating infrastructures for organizations.   
Application examples range from determining physical topologies for local area networks to 
cellular, agile manufacturing, in which the problem is closely associated with determining the 
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optimal number of clusters of workgroups, comprising servers, PC’s, printers, routers, 
firewalls, or automated welding machines.   

By far, the determination of ‘physical topologies’ for information networks, both wired 
and wireless, is perhaps the most important (Mueller et al. 2004), since networks serve as a 
foundation support technology for successful e-commerce or m-commerce systems.  Figure 1 
represents the problem context.   

Figure 1.  Information Network Workgroups 

Each information network requires a router, which delivers data packets of information 
from the source node (i.e. sender) to the appropriate sink node (i.e. receiver).  A server of the 
network is responsible for controlling and monitoring the network domain, often referred to 
as a ‘workgroup’.   As required, a group of subnetworks or subnets for short, for the server 
may be created by connecting it to another router (viz. daisy chaining), as indicated by dashed 
line(s) in Figure 1.  For greater modularity and reliability, however, building recursive 
subnets is not recommended.  Instead, dedicated server for each domain is considered the 
optimal.   Given the increasing number of PC’s, workstations, and other types of clients, 
however, allocation of these components/clients to the major service nodes such as servers, 
routers, network printers, and even firewalls, among others, is becoming prohibitively 
complex.  The problem is compounded for wireless networks, in which reception of radio 
signals or infrared light waves must be accounted for, prior to generating clusters of 
workgroups for the network infrastructure.   For a relatively large-scale organization, 
designing highly modular Local Area Networks (LAN) is imperative.   LANs effect not only 
the reliability of overall information system, but more importantly, its scalability to Wide 
Area Network (WAN) and even Corporate Networks (CN).   

A neural-network application is suggested for real-time intelligent facility layout.   In 
consequence, on-line, mass-customized facility layouts are expected to be available to the 
information systems manager.  Similar objectives for manufacturing were suggested by 
Tseng et al. (1997).   Classical clustering techniques such as Hungarian algorithm, Group 
Technology, and BLOCPLAN have been proven to be ineffective, relative to the method 
outlined in this research.  The effect of the development is illustrated with a simplified 
numerical example.   

Group Technology (GT) is a philosophy that originated from manufacturing systems, in 
which similar parts are identified and grouped together to take advantage of their similarities 
in manufacturing and/or design (Ham et al. 1985, Groover 1987, Chang et al. 1991).  Similar 
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parts are arranged into part families, and each family would possess similar design and 
manufacturing characteristics.  A robust and consistent part-classification-and-coding scheme 
is a prerequisite in implementing GT.  To this end, each part must be identified based on its 
unique code.

Hungarian algorithm-based Product Family Architecture (PFA) and Family-Based Design 
(FBD) have long been the foundation for Group Technology (GT), which involves finite 
number of iterations of row and column exchanges of two-dimensional part-machine vector.   
The problem of determining physical topologies for various numbers of information networks 
is highly analogous to the part-family clustering for manufacturing.  This indicates that 
alternative methods to GT, introduced in Willow (2002), may be applicable to information 
systems as well, and perhaps be accepted with higher effectiveness due to their need for real-
time communications and integrated modules.

This paper presents an alternative to traditional applications to GT for generating optimal 
cluster or workgroups.  A neural network is employed in forming the workgroups, in which a 
linear classifier is established with a classical feedforward network.  The proposed method, 
through a number of numerical experiments, has been proven to outperform such 
conventional methods as Part Family Analysis (PFA) (Groover 1987, Chang et al. 1991) and 
BLOCPLAN (Donaghey 1991, Donaghey and Pire 1991).

Organization of the paper follows.  In section 2, possible clustering with neural network is 
illustrated, followed by a linear classifier, constructed with perceptrons in section 3.  The 
linear classifier is extended to accommodate nonseparable patterns in section 4.   Illustration 
of the neural-network is provided numerically with an example in section 5.   Section 6 
summarizes the paper with conclusions and notes for future research.

2. Clustering with Neural Networks 
 Clustering part families is the objective of Group Technology (GT), which initiated a 

series of algorithm developments, including but not restricted to rank-order clustering by 
King, direct clustering, single-linkage clustering,  and  average-link clustering (Chang et al.
1991).  Further, Donaghey (1991) introduced BLOCPLAN for facility layout planning to be 
used by large-scale plant as well as cellular manufacturing systems.  However, these 
algorithms are associated with time-consuming iterations.  Most importantly, major 
drawbacks of these methods are that: 

The algorithms are applicable exclusively for linearly separable patterns.  Linearly 
non-separable patterns are thus under arbitrary control, resulting in great 
inaccuracies.   
There was no provision for user flexibility, such as inclusion of preferred number 
of clusters prior to the execution of these algorithms.  In essence, less a priori
information was available to the decision maker and/or management.   

 A Neural Network (NN) typically processes large-scale problems in terms of 
dimensionality, amount of data handled, and the volume of simulation or neural hardware 
processing (Willow 2005).  It emerged as an area of Artificial Intelligence (AI) (Russell et al.
2003) to mimic the human neurons in both perception and learning.  It is interesting to note, 
however, that a conceivably disparate area within information science classified as 
‘knowledge representation’ had brought the attention of researchers to pursue classes of 
‘computing and processing’, such as neural networks.  Object-oriented paradigm emerged as 
one of the better models for knowledge representation (Willow 1998a).   In fact, the 
motivation for NN research was to seek an improved methodology in machine learning, and 
more specifically, in the area of planning algorithm, thereby augmenting the techniques 
available at the time.  However, as the research progressed, more obstacles in emulating the 
human neurons were realized.   Toward this end, the jargon NN at present, is more 
appropriate if it were to be replaced with parallel, distributed simulation (Willow, 1998b).  
Figure 2 illustrates taxonomic views of NN (Willow 2002), based on former studies by 



Academy of Taiwan Business Management Review 51
4

Zurada (1992).  Notice Figure 2 does not encompass an exhaustive list of available NN 
models to date.

Figure 2.  Classification of Neural Network Models 

The concept of feedback plays a central role in learning for NN.   Two different 

types of learning are to be distinguished: learning with supervision (i.e., training) versus 

learning without supervision (Figure 3) (Willow 2002).   

Figure 3.  Learning Modes for Neural Networks: 

(a) Supervised versus  (b) Unsupervised 

 In supervised learning [Figure 3(a)], the desired response d of the system is provided 
by the teacher at each instant of time.  The distance [d, o] between the actual and the desired 
response serves as an error measure, and is used to correct network parameters externally.  
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Since adjustable weights are assumed, the teacher/supervisor may implement a reward-or-
punishment scheme to adapt the network’s weight matrix, W.   This mode of learning is 
pervasive, and is used in many situations of natural learning.  A set of input and output 
patterns called a training set is required for this learning mode.  Often, the inputs, outputs, 
and the computed gradient are deterministic, however, the minimization of error proceeds 
over all its random realizations.  As a result, most supervised learning algorithms reduce to 
stochastic minimization of error in multi-dimensional weight space  (Willow 2005).   
 In learning without supervision [Figure 3(b)], the desired response (d) is not known; 

thus, explicit error information cannot be used to improve network behavior.  Since no 
information is available as to correctness or incorrectness of response, learning must 
somehow be accomplished based on observations of responses to inputs of marginal or at 
times, no knowledge.  Unsupervised learning algorithms use patterns that are typically 
redundant raw data having no labels regarding their class membership, or association.  In this 
mode of learning, the network must discover for itself any possibly existing patterns, 
regularities, separating properties, etc.  While discovering these, the network undergoes 
change of its parameters, which is called self-organization.  Adaptive Resonance Theory 
(ART) is a good example of such a class.  An excellent application of ART is suggested by 
Willow (2005, 2007c) for a classical email server management problem.   

3. Linear Classifier Configuration with Perceptrons 

 A considerable number of Neural Network (NN) applications research to date have 
proposed highly complex mathematical models, and the authors have introduced various ad 
hoc algorithms inconsistent with their models.   In effect, real-time response often is not 
achieved due to the complexity of the model itself.   A single-layer perceptron with 
discriminant function suffices for identifying clusters of workgroups for information systems.  
A ‘perceptron’ is a single-layer feedforward NN with input and output layers and a threshold 
logic unit.  Figure 4 follows to illustrate.   

Figure 4.  Cluster Classification with Single-Layer Perceptron

Here, R is the number of classes for the input pattern to be distinguished by using the 
discriminators.  The cardinality for the input vector x is assumed to be n.  A simplified 
example of a bi-class discriminator, better known as the dichotomizer (i.e., R = 2) with an 
arity of 2 (n = 2) is illustrated in Figure 5.   
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Figure 5.  Dichotomizer in Single-Layer Perceptron: 

(a) Number of Clusters, R = 2 

Figure 5.  Dichotomizer in Single-Layer Perceptron  (cont’d):

(b) Decision Surface for n = 2 

 It is precisely this nature of the feedforward perceptron aforementioned, by which the 
decision maker has complete flexibility to predetermine the desired number of clusters (R)
prior to the execution of NN computing.  This is expected to increase the overall productivity 
of building the information system infrastructure considerably, where major operations such 
as network design takes precedence over most others.   
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 The discriminant function g(x) forms a decision hyperplane in the E2 space (i.e., n = 
2), and is defined as

)()()( 21 xxx ggg  (1) 

for dichotomizers.  Thus, the input pattern is ramified as class 1 if g(x) > 0, and class 2, 
otherwise [i.e., g(x) < 0].  A key to classification with perceptrons is the determination of 
g(x).  A series of g(x) can be simulated for the prescribed patterns in neural (viz. parallel) 
networks.

 A single Threshold Logic Unit (TLU) with a discrete sigmoid function is realized for 
the dichotomizer, such that: 

io  =  sgn[g(x)] =

0,1

0

0,1

)g(

) g(undefined,
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x

x

(2)

For continuous input vectors, the sigmoid or bipolar function becomes 

sgn[g(x)] = f(net) = 1
1

2 -
nete

, (3) 

where,  is the gain or steepness factor for searching the optimum/optima.  In Figure 6, 
f(net) is depicted with a range of  values (Zurada 1992).  Note that as , the 
continuous function converges to the discrete sigmoidal function.  The discrete version is 
almost always applicable for linear classification.   

Figure 6.  Continuous Activation Functions of a Neuron in TLU 
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An additional concept of classifier with minimum-distance follows in Figure 7.  Notice the 
decision hyperplane is determined based on the following geometrical insights: 

g(x) should include the midpoint of the line segment 21PP , given that vertices P1 and P2
represent the approximate center of gravity of class 1 and 2, respectively.  In terms of vectors,
x1 and x2 denote the center of gravity for each class. 

g(x) should be normal (i.e., perpendicular) to the vector x1 – x2.

Figure 7.  Minimum-Distance Classifier 

The decision hyperplane can thus be expressed as the following. 

g(x)  =  (x1 – x2)Tx + 0)||||||(||
2
1 2

1
2

2 xx (4)

It can also be seen that g(x) implied here constitutes a hyperplane described by the equation 

w1x1 + w2x2 + … + wnxn + wn+1 = 0,     or 

wTx + wn+1 = 0     (5)

or, briefly, 

0
11

xw T

nw
,    (6)

where, w is the [n 1] weight (column) vector. 
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A widely accepted convention is to append formally a 1 (cf., scale factor; unit normal vector) 
as the n+1th component of each pattern vector.  The augmented pattern vector is now denoted 
by y, with n+1 rows, and is defined as

y
1

x
     (7)

The weighting coefficients w1, w2, …, wn+1 of the dichotomizer can now be obtained by 
comparing equations (4) and (5) as follows: 

w = x1 – x2

wn+1 = xx )||||||(||
2
1 2

1
2

2    (8)

The Euclidean distance between input pattern x and the prototype pattern vector xi is 
expressed by the norm of the vector x – xi  as 

|| x – xi ||  = )()( i
T

i xxxx    (9)

A minimum-distance classifier computes the distance from pattern x of unknown 
classification to each prototype.  Then, the category number of that closest, or smallest 
distance, prototype is assigned to the unknown pattern.  Calculating the squared distances 
from equation (9) yields 

|| x – xi ||2  = xTx – 2xi
Tx + xi

Txi,  for  i = 1, …, R. (10)

Hence, the discriminant function can now be summarized as  

g(x)  = xi
Tx - 

2
1  xi

Txi,  for  i = 1, …, R   (11)

= wi
Tx  + wi, n+1, for  i = 1, …, R   (12) 

The discriminant function coefficients that are weights wi can thus be determined by letting 

wi  = xi     (13) 

wi, n+1  =  - 
2
1  xi

Txi,  for  i = 1, …, R (14) 
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In summary and in essence, the decision surface, say Sij, for the contiguous decision regions 
i and j  are hyperplanes given by the equation 

gi(x) – gj(x)  =  0, or     (15)

wi
Tx  + wi, n+1 – wj

Tx - wj, n+1  =  0   (16)

A numerical example follows to illustrate.   

3.1.  Numerical Example for Minimum-Distance Classifier 

A linear classifier is designed in this example (n = 2, R = 3), in which the decision 
lines are generated using a priori knowledge on the center of gravity of the prototype 
points.  Suppose the coordinates for the assumed prototype points are 

2

10
1x ,

5

2
2x ,

5

5
3x ,

as depicted in Figure 8.

Figure 8.  Minimum-Distance Classifier Example 

The augmented (i.e., with wi, n+1) weight vectors, based on equations (13) and (14) are 
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wi  =
i

T
i

i

xx

x

2
1 ; w1 = 

52

2

10

, w2 = 

5.14

5

2

, w3 = 

25

5

5

The corresponding linear discriminant functions are  

g1(x)  =  10x1 + 2x2 – 52 

g2(x)  =    2x1 - 5x2 – 14.5 

g3(x)  =   -5x1 + 5x2 – 25 

Based on the computed discriminant functions, a minimum-distance classifier using the 
maximum selector can be completed for R = 3.  Using equation (15), the decision lines 
can be calculated as follows. 

S12: g1(x) – g2(x)  =     8x1 +   7x2 – 37.5  = 0 

S13: g3(x) – g1(x)  =  -15x1 +   3x2 + 27     = 0 

S23: g3(x) – g2(x)  =    -7x1 + 10x2 – 10.5  = 0 

The discriminant hyperplanes clearly indicate that there are indeed three linearly 
separable regions ( 1, 2, and 3), as shown in Figure 8.

 When the desired output vector d is known a priori, training the network possibly 
through feedback may begin, as depicted in Figure 9.  The notion of feedback NN was 
conceptualized in Figure 3(a).

Figure 9.  Linear Classifier with Training 
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 In essence, perceptron models of NN, introduced in section 2, can make a significant 
improvement over the conventional methods for clustering based on Hungarian algorithm.    
Various extensions to Hungarian algorithm have many limitations, among which is the 
determination of the number of possible clusters, R.   The decision maker has no control over 
R, which is generated by complete iterations of the algorithm.  By contrast, perceptron allows 
the flexibility of selecting the desired number of clusters a priori, preferably selected by the 
decision maker.   
4. Nonseparable Patterns 

For the linearly nonseparable input pattern(s) x, there is a possibility of a network system 
client(s) such as a PC and workstations being classified under arbitrary workgroups.   One 
objective of the Group Technology (GT) is to minimize such anomalies, which was not fully 
realized in previously introduced algorithms.   To accommodate this problem, additional 
layer(s) to the feedforward networks is proposed in this section.  Each layer is perceived as a 
‘set’.  Additional layers therefore, expedite further mappings to the other sets accordingly.   
Notice the object of GT is to generate mutually exclusive or disjoint clusters for all 
components under the network design.   

An intermediate layer (of neurons) between the input and output layers is introduced, 
dedicated to pattern-to-image transformation (i.e., filtering).  In set-theoretic terms, a double 
mapping is in effect (Figure 10).   

Figure 10.  Set Mappings of Linearly Nonseparable Patterns 

Suppose two sets of patterns 1 and 2 are to be classified into two categories.  The example 
patterns are shown in Figure 11(a).  In short, R = 2, but the patterns are linearly nonseparable.  
Three arbitrarily selected partitioning surfaces 1, 2, and 3 have been shown in the pattern 
space, x.  The partitioning has been done in such a way that the pattern space now has 
compartments containing only patterns of a single category.  Moreover, the partitioning 
surfaces are hyperplanes in pattern space En.  The partitioning of Figure 11(a) is also 
nonredundant (i.e. implemented with minimum number of lines).  It corresponds to mapping 
the n-dimensional original pattern space x into the three-dimensional image space, o.

Hence, each of the decision hyperplanes 1, 2, or 3 is implemented by a single discrete
perceptron with suitable weights, and the transformation of the pattern space to the image 
space is performed by the network as displayed in Figure 11(b).  Note only the first layer of 
discrete perceptrons responding with o1, o2, and o3  is involved in the discussed space 
transformation.   
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(a) Partitioning in the Pattern Space 

(b) Double-mapped Layered Network from part (a) 

Figure 11.  Classification of Linearly Nonseparable Patterns 

 Since the arrows point toward the positive side of the decision hyperplane in the 
pattern space, each of the seven compartments from Figure 11(a) may be mapped into one of 
the vertices of the [-1, 1] cube.  As a consequence, the result of the mapping for the patterns 
from the figure is illustrated in Figure 12, with image space o1, o2, and o3 corresponding 
compartment labels at corners. 
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Figure 12.  Classification in the Image Space by Intermediate Perceptrons 

 The patterns of class 1 from the original compartments B, C, and E are mapped into 
vertices (1, -1, 1), (-1, 1, 1), and (1, 1, -1), respectively.  In turn, patterns of class 2 from 
compartments A and D are mapped into vertices (-1, -1, 1) and (-1, 1, -1), respectively.  This 
shows that in image space o, the patterns of class 1 and 2 are easily separable by a plane 
arbitrarily selected, such as the one in Figure 12, having equation o1 + o2 + o3 = 0.   The 
single discrete perceptron in the output layer with inputs o1, o2, and o3, zero bias, and the 
output o4 is now able to provide the correct final mapping of patterns into classes as follows. 

o4  =
2class:0)sgn(

1class:0)sgn(

321

321

ooo

ooo
 (17)

5.  Neural Network Architecture for Linearly Separable Clustering 

 Thus far, insights to developing a new methodology in Group Technology (GT) have 
been investigated.  A neuro-system encompassing a single-layer perceptron architecture is 
proposed for forming the network workgroups, with the flexibility of selecting the desired 
number of classes a priori.  Upon completion of the classification, linear separability of the 
input patterns will be verified.  Further, for linearly inseparable outputs, re-classification for 
the input pattern vectors will be sought with an augmented neuro-architecture.  That is, a 
multiply layered feedforward network will be employed until complete linear separability is 
achieved.   The cardinality of the client-server (adjacency) matrix in most network systems is 
of the second order (i.e., two-dimensional; n = 2; flat-file structure).  However, the suggested 
perceptron model could easily accommodate problems with higher order (i.e. recursion).  For 
example, a complex network configuration problem might involve classifying its clients and 
servers into workgroup clusters, which are then required to form another set of clusters of 
floor plans, and in turn to encompass many buildings.   Figure 13 follows to illustrate.   
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(a) Single-Layer Perceptron Classifier 

(b) Double-Layer Feedforward Classifier  (n = 2) 

Figure 13.  Proposed Framework for Workgroup Clusters of Network System 

 A simplified numerical example follows to illustrate the framework and method introduced in this 
paper.     

5.1.  Example: Neural Network Applications to Workgroup Determination 
Given the following ‘client-server matrix’ in two dimensions (i.e., n = 2)  (Ganz et al. 2004),  

Table 1.  Initial Client-Server Matrix 

      Client 

  Server

PC-1 PC-2 PC-3 PC-4 PC-5 PC-6 PC-7 PC-8 PC-9 PC-10

Server-01 X X X X X      
Image-01 X X      
Scanner-01 X X X       
Printer-01 X X      
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Plotter-01 X X        
Server-02      X X X X X 
Image-02      X    X
Scanner-02 X X X X X X X 
Printer-02       X X
Plotter-02        X

it can be regenerated in two-dimensional coordinates, appropriate for processing in neural 
net as the input pattern vector.  Numerical proximity or acquaintance values are determined 
for each axis/dimension, usually from the Information System/Information Technology (IS/IT) 
dimension system or decision makers.  Below, a sample pattern vector for the given matrix is 
presented, based on utility measures.   

Table 2.  Input Pattern Vector 

       x2 2.1 2.4 2.8 4.1 4.2 5.1 7.2 9.3 14.1 14.2 

2.3 X1 X2 X3 X4 X5      
1.1 X6    X7      
1.2 X8 X9 X10       
3.2 X11 X12      
3.4 X13 X14        
4.2      X15 X16 X17 X18 X19

4.3      X20    X21

5.1 X22 X23 X24 X25 X26 X27 X28

5.2       X29 X30

5.3        X31

Thus, the following pattern matrix (i.e., 31 column vectors) is generated:   

)312(
X  =  [x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, x13, x14, x15, x16, x17, x18, x19, x20,

x21, x22, x23, x24, x25, x26, x27, x28, x29, x30, x31]
where,

x1 =  [2.3,    2.1]T, x2 =  [2.3,    2.4]T, x3 =  [2.3,    2.8]T,

x4 =  [2.3,    4.1]T, x5 =  [2.3,    4.2]T, x6 =  [1.1,    2.1]T,

x7 =  [1.1,    4.2]T, x8 =  [1.2,    2.4]T, x9 =  [1.2,    2.8]T,

x10 = [1.2,    4.1]T, x11 = [3.2,    2.1]T, x12 = [3.2,    4.2]T,

x13 = [3.4,    2.4]T, x14 = [3.4,    2.8]T, x15 = [4.2,    5.1]T,

x16 = [4.2,    7.2]T, x17 = [4.2,    9.3]T, x18 = [4.2,  14.1]T,

x19 = [4.2,  14.2]T, x20 = [4.3,    5.1]T, x21 = [4.3,  14.2]T,

x22 = [5.1,    2.4]T, x23 = [5.1,    4.2]T, x24 = [5.1,    5.1]T,

x25 = [5.1,    7.2]T, x26 = [5.1,    9.3]T, x27 = [5.1,  14.1]T,

x28 = [5.1,  14.2]T x29 = [5.2,    7.2]T, x30 = [5.2,  14.1]T,

x31 = [5.3,    9.3]T

x1
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Assuming these patterns are to be classified into two new workgroups due to physical 
facility constraints (i.e. R = 2), a (single) discriminant function, g(x) is generated.   Note that 
the number of clusters, R, was selected by the decision maker such as the information 
systems administrators in advance.   

The minimum-distance classification scheme is to be applied.  In Figure 14, the pattern 
vectors are projected on the E2 Cartesian plane, where the center of gravity for each class is 
estimated.

Figure 14.  Minimum-Distance Classifier for the Example 
y1 and y2 are the center of gravity of the two possible clusters, respectively: 

y1  =
8

7.4

2

1

x

x
, y2  =

1.3

3.2

2

1

x

x

Therefore, a discriminant function g(x) that is normal to the y1 - y2 vector is generated as 
shown in Figure 14.  For verification, the discriminant function in matrix form is 

g(x)  = 0
11

xw T

nw

=

159.35

9.4

4.2

2

1

x

xT

  =  2.4x1 + 2.9x2 + 35.59  =  0 

where, 
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w [w1, w2, …, wn]T  = y1 – y2  =  [2.4,  4.9]T, and

wn+1 = yy )||||||(||
2
1 2

1
2

2 =
2

22
2

22 0.87.41.33.2
2
1  35.59 

The following part families are thus formed: 

g(x) > 0: Class 1 = {X15, X16, X17, X18, X19, X20, X21, X22, X24, X25, X26, X28, X29, X30, X31}

g(x) < 0: Class 2 = {X1, X2, X3, X4, X5, X6, X7, X8, X9, X10, X11, X12, X13, X14, X23, X27}

 In comparison, similar clusters of workgroups are generated by using one of the conventional 
techniques (i.e., King’s algorithm), as illustrated in Table 3 (Chang et al. 1991).  Notice how Scanner-02
caused linear non-separability under the conventional scheme.   

Table 3.  Generation of Part Families with King’s Algorithm 

PC-1 PC-4 PC-3 PC-5 PC-2 PC-6 PC-10 PC-7 PC-9 PC-8 Wi Rank

Image-01 1 1       18 1 
Printer-01 1 1       18 1 
Plotter-01 1 1      40 3 
Scanner-01 1 1 1      44 4 
Server-01 1 1 1 1 1      62 5 
Scanner-02 1 1 1 1 1 1 1 2032 10
Image-02      1 1  192 6 
Printer-02      1 1  768 7 
Plotter-02      1 1024 8 
Server-02      1 1 1 1 1 1984 9 
Scanner-02 1 1 1 1 1 2032 10

Weight 2 4 8 16 32 64 128 256 512 1024   

 Should the patterns be linearly nonseparable, reconfiguring the network in a multi-
layer feedforward architecture is necessary, as emphasized in section 4.  Mathematical 
software capable of solving parallel network problems such as Mathematica (Wolfram 1991) 
and/or MatLab/SIMULINK (Donnelly 1995) may be useful.   
6.  Conclusions 
 This paper presented an alternative approach to generating workgroup clusters for 

information system networks.  Generation of linearly separable patterns or clusters is equally 
important for information systems as well as for conventional business entities such as 
project planning and/or manufacturing.  A single-layer peceptron neural net, along with 
multi-layer feedforward nets where applicable, have been selected as the major vehicle.  
Comparisons were made with inflexible Hugarian-based algorithms, associated with 
iterations of row and column exchanges.     
 By incorporating the suggested models of this paper into building ‘intelligent software 

agents’ (Willow 2005, 2006b, 2007a, 2007b, 2007c), a comprehensive Information Systems 
Management (ISM) may be achieved, allowing real-time network designs as well as frequent 
modifications to their topologies.                                                                                         
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