Resources

Main Menu

  • Summer Research Program 2017

    Faculty Research Mentors and Projects


    BIOLOGY

    Dr. Pedram P. Daneshgar

    Associate Professor, Biology/Marine and Environmental Biology and Policy Program

    Email: pdaneshg@monmouth.edu

    RESEARCH PROJECT:

    Assessing Climate Impacts on Maritime Tree Species Using Dendrochronology  

    The project will focus on assessing the impacts rising atmospheric CO2 annual climate and climate change on growth of trees found in maritime forests. Maritime forests represent climax communities in dune succession and are often very old. The biological literature is very limited when it comes to how maritime tree species have responded to climate change and major storm events. A helpful tool to assess these impacts is the use of dendrochronogical methods, which is the study of tree rings. In temperate climates, annual rings form in most tree species and these rings are often highly correlated with changes in annual climate and pulses in resources, thus they can be useful in assessing the impacts of climate change and tropical storms.

    PLEASE NOTE: This faculty member is not accepting high school students.



    Dr. Keith Dunton

    Assistant Professor, Biology/Marine and Environmental and Policy Program

    Email: kdunton@monmouth.edu

    RESEARCH PROJECT:

    Assessment and Inventory of New Jersey Coastal Fisheries.

    Coastal waters of New Jersey and New York act as essential nursery grounds and migratory hotspots to numerous commercially and recreationally important finfish and elasmobranch species. The purpose of this study will be to examine the biology of these local resources with work largely focused on tagging recreational finfish/elasmobranch species through traditional and electronic tagging as well as examining predator-prey dynamics through diet. Work will also include analyzing previously collected fisheries data using Microsoft Access Databases and GIS (Access and GIS experience preferred but not necessary).

    PLEASE NOTE: This faculty member is not accepting high school students.


    Dr. Martin Hicks

    Assistant Professor, Biology

    Email: mhicks@monmouth.edu

    RESEARCH PROJECT:

    Biological engineering, generation and evaluation of gene transfer vectors for the delivery of RNA therapeutics to the tumor cell microenvironment

    Glioblastoma multiforme (GBM), the most common central nervous system (CNS) malignancy, is characterized by overexpression of a specific class of membrane bound receptors, tyrosine kinase receptors (TKR). Upon activation, TKRs lead to growth and proliferation of tumor cells. Current prognosis for GBM patients receiving standard care is approximately fourteen months. GBM tumors, protected by the blood brain barrier grow aggressively extending into healthy tissue. Our novel approach is to develop a delivery system using DNA that encodes anti-sense RNA molecules. These RNA molecules are designed to alter the processing and pre-mRNA splicing of the TKR mRNA transcripts, rendering them ineffective and non-active. This has the potential to reduce the growth and proliferation of GBM cells and may lead to a novel therapy for GBM.
    More specifically, our Lab works on the biological engineering, synthesis and testing of novel gene transfer vectors directed against genes up-regulated in cancer, specifically glioblastoma multiforme. Our strategy is to deliver the genetic sequences of RNA therapy molecules that target the transcripts of receptor tyrosine kinases (RTK). Ultimately, the RNA therapies modify the expression and function of RTKs. Current strategies include 1) anti-sense RNA therapy molecules to alter TKR pre-mRNA splicing 2) anti-sense RNA therapy to effectively destabilize and block TKR expression 3) and effective delivery of RNA aptamers to block TKR activation

    High School students are encouraged to apply to this project.


    Dr. Cathryn Kubera

    Assistant Professor, Biology

    Email: ckubera@monmouth.edu

    RESEARCH PROJECT:

    The role of GABA signaling in fetal alcohol syndrome

    Fetal alcohol spectrum disorders and Fetal Alcohol Syndrome (FAS) create significant social, economic, and medical burdens for the several million Americans that have these conditions. In addition to having mental disabilities, individuals with FAS often have motor impairment and coordination deficits that are due to cell death-related abnormalities in the cerebellum. This project will examine the role of alcoholism-related genes like the GABA receptor subunits during cerebellum development. A chicken embryo model will be used to study timing of gene expression in relation to alcohol exposure, and determine patterns of cell death in the cerebellum. This will facilitate understanding of the molecular mechanisms underlying the progression of FAS.

    PLEASE NOTE: This faculty member is not accepting high school students.


    Dr. James P. Mack

    Professor, Biology

    Email: mack@monmouth.edu

    RESEARCH PROJECT:

    Development of Topical Emollients of Essential Oils and Methylglyoxal to Combat Multidrug Resistant Bacteria in Healthcare Settings

    Essential Oils including cassia, cinnamon, thyme and methylglyoxal (found in Manuka honey) will be combined with carrier oils (lanolin, jojoba and olive oil) to form emollients in various dilutions to determine their efficacy in inhibiting the growth of multidrug resistant bacteria using the Kirby-Bauer disk diffusion method. The bacteria to be tested include: Pseudomonas aeruginosa, Acinetobacter baumanni and Extended Spectrum Enterobacteriaceae (ESBL).

    PLEASE NOTE: This faculty member is not accepting high school students.


    Professor James Nickels

    Marine Scientist, Urban Coast Institute / Biology

    Email: jnickels@monmouth.edu

    RESEARCH PROJECT:

    Assessing Coastal Lakes in Monmouth County

    Participants will work to help design and implement through field work an assessment program for coastal lakes including water quality monitoring, sediment sampling and hydrographic surveys (depth and debris mapping). This is a pilot program and will focus on select coastal lakes in Monmouth County. Participants will also have the opportunity work with local NGO’s and researchers at other academic institutions. Additional work will involve water level mapping and field /vessel support for other projects.

    PLEASE NOTE: This faculty member is not accepting high school students.


    Dr. Megan Phifer-Rixey

    Assistant Professor, Biology

    E-Mail: mphiferr@monmouth.edu

    RESEARCH PROJECT:

    Environmental adaptation in wild house mice

    The house mouse (Mus musculus domesticus) is one of the most widely distributed mammals and one of the most widely used genetic model organisms. Nevertheless, relatively little is known about genetic variation in natural populations. Recently, house mice have expanded their range in association with humans establishing populations in a variety of novel habitats, including most of the Americas. While this expansion has made them notorious as exotic, invasive pests, it also provides an exceptional opportunity to study the genetic basis of evolutionary change over short time scales. My research is focused on connecting adaptive variation at the organismal level to specific genetic changes, with the goal of understanding how populations adapt and, in particular, how selection acts on complex, quantitative traits. This summer, my lab will be focused on two different approaches 1) using computational methods to characterize genetic structure in natural populations and to identify genes and regions that are responding to environmental selection and 2) establishing colonies of live mice to investigate the traits that have enabled house mice to adapt to so many different climates. Please indicate on your application if you are interested in Project 1, Project 2, or both. Project 2 will require handling live mice and IACUC training. Students interested in continuing their research during the school year are especially encouraged to apply.

    PLEASE NOTE: This faculty member does not accept high school students.


    Dr. Jeffrey H. Weisburg

    Specialist Professor, Biology

    Email: jweisbur@monmouth.edu

    RESEARCH PROJECT:

    Use of Pomegranate Juice Extract and Apple Extract to Treat and to Inhibit Inflammation in Cancers of the Oral Cavity and Glioblastoma

    The link between inflammation and cancer has been extensively studied. The use of nutraceuticals, any products derived from food sources with extra health benefits, have been found to have possible anti-inflammatory properties. We want to see if pomegranate juice extract and apple extract had inhibit the inflammatory process in cancers of the oral cavity and the brain.

    PLEASE NOTE: This faculty member is not accepting high school students.


    CHEMISTRY AND PHYSICS

    Dr. Yana Kholod

    Instructor, Chemistry and Physics

    E-MAIL: ykholod@monmouth.edu

    RESEARCH PROJECT:

    A Computational Insight into Oxazole-Based Macrocycle Ligand Binding to DNA

    The current project is focused on computationally-aimed selection of small organic molecules – ligands– that have shown a potential as anti-cancer drugs with low toxicity. Specifically, various oxazole-based macrocycles will be considered. Different molecules of this class, depending on their structure and substituents, bind highly selectively to certain DNA forms (e.g., double-helix, parallel, anti–parallel, G-quadruplex and mixed–type hybrid structures). Therefore, such oxazole-based macrocycles can be selected for optimal binding to specific DNA forms, and subsequent targeted inhibition of telomerase in cancer cells. Computational chemistry tools, such as quantum chemical and molecular dynamics methods will be used for a comprehensive survey of interactions of a set of oxazole–based macrocycle molecules with various DNA forms. The simulations will be performed at the high-performance computer systems available at Monmouth University.

    PLEASE NOTE: This faculty member is not accepting high school students.


    Dr. Dmytro Kosenkov

    Assistant Professor, Chemistry and Physics

    Email: dkosenko@monmouth.edu

    RESEARCH PROJECT:

    Modeling Energy Transfer in Light Harvesting Proteins: The Role of Molecular Vibrations

    Mechanisms of energy transfer in biological molecules will be investigated to find new efficient ways of solar energy conversion into electricity and environmentally friendly fuels. Molecular modeling software based on novel quantum-mechanical methods will be used to obtain detailed molecular-level knowledge of the key mechanisms of light capture by biological and organic molecules—chromophores. High performance/supercomputing systems will be employed to carry out the simulations.

    PLEASE NOTE: This faculty member is not accepting high school students.


     Dr. Greg Moehring

    Associate Professor, Chemistry and Physics

    Email: gmoehrin@monmouth.edu

    RESEARCH PROJECT:

    Structural and hydrogen exchange investigations of seven-coordinate rhenium complexes

    While coordination number seven is relatively uncommon for coordination complexes it is the preferred coordination number for organometallic complexes of the transition metal rhenium in its +3 oxidation state. This project follows up on our successful investigations of hydrogen exchange properties of eight- and nine-coordinate rhenium polyhydride complexes and our structural investigations of the eight-coordinate systems. One aim of this work is to examine the intramolecular exchange of hydride ligands among different coordination sites in the seven-coordinate systems as well as to examine the intramolecular exchange of hydride ligands with hydrogen atoms from other ligands or the intermolecular exchange of hydride ligands for hydrogen atoms from small molecules within the same experimental system. A second aim of this work is examine the structure and rearrangement of these seven coordinate systems. The overall goal of the work is to identify useful or interesting properties of these seven-coordinate systems with regards to their rearrangements and their ability to activate small molecules.

    The project entails the synthesis of new compounds that contain unsymmetrically substituted ligands, ligands that include a chiral center, and chelating ligands. By reducing the symmetry of the seven-coordinate complexes with such ligands we should be able to study the rearrangements and exchanges that occur by variable temperature NMR spectroscopy. Modelling of the spectra at various temperatures will allow for the determination of the thermodynamics properties of the rearrangements and exchanges.

    PLEASE NOTE: This faculty member is not accepting high school students


    Dr. Jonathan Ouellet

    Assistant Professor, Department of Chemistry and Physics

    Email: jouellet@monmouth.edu

    RESEARCH PROJECT:

    Cloning and Characterizing RNAs binding an Oncometabolite and binding glucose

    Continuing the selection (initiated by previous undergraduate students) within a random pool of selected RNAs binding an oncometabolite (or glucose), the core of this summer’s project is to isolate the various RNA aptamers by cloning their DNAs into plasmids. Functional assays as well as RNA probing of the positive candidates will identify the core of the RNA used to bind the oncometabolite (or glucose). Considering the high potential for cancer diagnosis and treatment (or for diabetes) using this RNA, its characterization and secondary structure elucidation will provide critical data to publish this project.

    Radiometric fluorescence measurements to monitor riboswitch activity in bacteria

    When studying gene expression, several controls are usually required to establish if a new reporter system is properly working. In order to make this system easier, we are in the process of developing a riboswitch reporter system where a single promoter would initiate the transcription of mCherry (fluorescent red), the riboswitch and finally GFP (fluorescent green).

    This ratiometric fluorescent reporter will be later used when the aptamers from the previous projects will be transformed into riboswitches.

    Non-radioactive kinetics measurement of RNA self-cleavage

    The gold standard of ribozyme activity quantification is to label the RNA substrate with the radioactive phosphorus isotope 32P. Heavy regulation, safety and cost are major concerns when working with radioisotopes. Over the recent years, brighter nucleic acid dyes have been developed to stain RNA and DNA in gels.
    This project involves the testing of the various dyes to evaluate the detection sensitivity via a DNA-cleaving DNA activity.

    PLEASE NOTE: This faculty member is not accepting high school students


    Dr. Tsanangurayi Tongesayi

    Associate Professor, Chemistry and Physics

    Email: ttongesa@monmouth.edu

    RESEARCH PROJECT:

    Microplastics and the Biogeochemistry of Toxic Metals in the Aquatic Environment

    The main goal of this project is to study mircoplastics in the aquatic environment with respect to their origin; chemical and physical properties; mobility; surface reactivities; and surface biogeochemistry of adsorbed chemical pollutants. Microplastics are comprised of synthetic polymer products manufactured as additives in various consumer products such as hand, facial, and body cleansers; small pieces from degrading industrial and domestic polymer products; polymeric fibers released by washing of synthetic clothing and plastic abrasion during dishwashing; and preproduction pellets that are used in plastic production. They occur in various shapes that include spheres, fibers, and fragments. They enter the aquatic environment primarily via improper waste disposal, insufficient waste management, and urban runoffs. In the aquatic environment, microplastics harbor microbes and adsorb chemical pollutants. As a result, microplastics can introduce pathogenic organisms and chemical toxicants from wastewater to the less contaminated freshwater and marine habitats. They can also enter food webs through filter feeders.

    PLEASE NOTE: This faculty member is not accepting high school students.


    COMPUTER SCIENCE AND SOFTWARE ENGINEERING

    Professor Richard Eng

    Adjunct, Computer Science and Software Engineering

    Email: reng@monmouth.edu

    RESEARCH PROJECT:

    Noninvasive Indicators of Non-alcoholic Fatty Liver Disease (NAFLD) from Big Data

    Non-alcoholic fatty liver disease is a difficult clinical diagnosis to make. The most definitive test is an invasive liver biopsy. Mining electronic health records and bariatric surgery patient records may identify less invasive indicators or the non-alcoholic fatty liver disease. The research will be done in three phases. Phase 1: Data collection, exploration, and preparation. Phase 2: Application of unsupervised and supervised machine learning to discover potential predictors of NAFLD. Phase 3: Predictive model validation

    PLEASE NOTE: This faculty member is not accepting high school students.


    Professor Raman Lakshmanan

    Adjunct Professor, Computer Science and Software Engineering

    Email: rlakshma@monmouth.edu

    RESEARCH PROJECT 1:

    Use of IoT (Internet of Things) devices in Healthcare Marketing

    This project will explore innovative ways to incorporate IoT devices in marketing healthcare products and services. The project will develop an integrated hardware, software and messaging platform that can be widely deployed to market healthcare products in a secure and cost effective manner.

    RESEARCH PROJECT 2:

    Mobile App for Advanced Data Analytics in Healthcare Services

    This project will develop an iOS app for tablet devices for use by field salesforce and corporate marketing organizations to present advanced data analytics on various healthcare services.

    PLEASE NOTE: This faculty member is not accepting high school students.


    Professor Jodee Vallone

    Adjunct Professor, Computer Science and Software Engineering

    Email: jvallone@monmouth.edu

    RESEARCH PROJECT:

    Virtual Reality Video Game

    Develop a mobile Virtual Reality (VR) video game to stimulate the effects of Hurricane Sandy. Students will utilize steps of the engineering design process to understand mobile VR game development from a production perspective. They will successfully create a VR concept, story board, Game Developer Document (GDD), and will use the Unity3D game engine (C Sharp #) to implement a video game. Faculty mentor is seeking researchers with experience in Unity and/or C# programming.

    PLEASE NOTE: This posting is directed to college-level students.


    Professor Martin von Grossmann

    Adjunct Professor, Computer Science and Software Engineering

    Email: mvongros@monmouth.edu

    RESEARCH PROJECT:

    Mixed Reality Technology in the Real World

    Using a phased implementation model; provision and develop an in-store retail experience using augmented reality, projection mapping and possibly holographic imagery where a client/shopper engaging experiences. This project can form as the model and module for future building of augmented and mixed reality in-store customized experiences.

    PLEASE NOTE: This faculty member is not accepting high school students


    Dr. Jay Wang

    Professor, Computer Science and Software Engineering

    Email: jwang@monmouth.edu

    RESEARCH PROJECT:

    Emergency Healthcare Service Workflow Modeling and Analysis

    A health emergency is a situation that poses an immediate risk to health and life and requires urgent intervention to prevent its worsening. Emergency healthcare service is a real-time service, where timeliness is critical to mission success. Workflow management technology has received considerable attention in the healthcare filed in recent years for the automation of both intra- and inter-organizational healthcare processes. However, more work on the timeliness analysis of emergency healthcare is needed. This research will explore the use of time Petri nets in emergency healthcare service modeling, timing performance assessment and resource requirements analysis.

    PLEASE NOTE: This faculty member is not accepting high school students


    Dr. Cui Yu

    Associate Professor, Computer Science and Software Engineering

    Email: cyu@monmouth.edu

    RESEARCH PROJECT:

    Experiment of Building an Innovative Computer Powered Tool or Software System

    There are so many people who rely on the internet to get information for study and work. However, not everyone can make the best of their screen time. In this project, we will conduct research to develop tools to help people better manage their time and usage on the computers, tablets, smart phones, etc.

    High School Students will be considered if they have programming experience.


    MATHEMATICS

    Dr. Richard Bastian

    Lecturer, Mathematics

    Email: rbastian@monmouth.edu

    RESEARCH PROJECT

    Statistical Consulting Projects will include:

    1. A Model Relating Obesity with Spinal Injuries in Dogs: Consulting project in conjunction with Red Bank Veterinary Hospital. Statistical analysis and interpretation of data.

    2. Hemangiopericytoma in Dogs: Consulting project in conjunction with Garden State Veterinary Specialists.  Statistical analysis and interpretation of data.

    3. Educating Students with Autism Spectrum Disorder: Implementation of Professional Development within the State of New Jersey (collaboration with Dr. Stacy Lauderdale, Monmouth University School of Education. (Exploration & Implementation of statistical analysis techniques for these data.

    4. Analyzing Small Sample Data from Genetics Experiments Relating to Brain Cancer (Collaboration with Dr. Martin Hicks in Biology): Exploration of statistical techniques for analyzing small sample data.

    5. Analysis of Data from Experiments on Brain Cell Disorders in Mice (Collaboration with Dr. Catherine Kubera in Biology): Exploration of advanced statistical analysis techniques for these data.

    6. Salinity Gradients in the Bahamas (Collaboration with Dr. Pedram Daneshgar in Biology): Statistical design, data collection & analysis (types of tests, sample sizes, power, effect sizes, etc) needed to answer research questions about the effect of salinity on mangroves in the Bahamas.

    7. Fish Tagging Experiments on Sturgeon (Collaboration with Dr. Keith Dunton in Biology): Consulting project analyzing migration patterns of sturgeon.

    PLEASE NOTE: This faculty member is not accepting high school students.


    Dr. Zachary Kudlak

    Assistant Professor, Mathematics

    Email: zkudlak@monmouth.edu

    RESEARCH PROJECT:

    A difference equation is a recurrence relation

    where f is a function, and x0, x-1, …, x-k are initial conditions. Difference equations are useful when studying many natural phenomena, such as populations of organisms. For example, xn might represent the population of a species at time n. Naturally, the population at the next period in time will somehow depend on the current population, and perhaps the past population.

    We are interested in studying the boundedness character of solutions, as well as the existence of equilibria and periodic solutions, and the stability of such behaviors.

    Often times an environment does not remain constant over time. Consider, for example, the effect that changing seasons might have on a population. We are motivated to investigate the behavior of solutions of nonautonomous difference equations, and in particular, those for which the difference equation is defined periodically. In other words, we will consider a difference equation such as

    xn+1 = fn (xn, xn-1, ...xn-k)

    where there is some integer p such that for all n,

    fn+p = fn.

    We will investigate several rational functions with the potential for interesting results. Rational functions are particularly interesting, because they have been used in biological models, such as May's host-parasitoid model and the Beverton-Holt model.

    PLEASE NOTE: This faculty member is not accepting high school students